Estimation of Neural Network Parameters for Wheat Yield Prediction

Georg Ruß, Rudolf Kruse, Martin Schneider, Peter Wagner

¹Otto-von-Guericke-Universität Magdeburg, Germany

²Martin-Luther-Universität Halle-Wittenberg, Germany

IFIP AI, September 8th, 2008

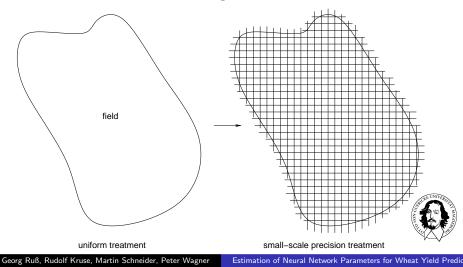
Outline	
Motivation	
Available Data	
Points of interest	
Data Modeling	
Results	
Work in Progress: Self-Organizing Maps	

Outline

Motivation

Available Data Data Details Data Overview

Points of interest


Data Modeling

Results

Work in Progress: Self-Organizing Maps

Motivation: Precision Farming

Motivation: Precision Farming

precision farming

- divide field into small-scale parts
- treat small parts independently instead of uniformly
- cheap data collection
- GPS-based technology
- lots of data (sensors, imagery, GPS-tagged)
- use data mining to
 - improve efficiency
 - improve yield

Outline Motivation	
Available Data	
Points of interest	
Data Modeling	
Results	
Work in Progress: Self-Organizing Maps	

Data Flow Model

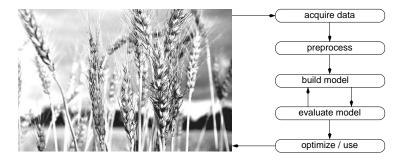


Figure: Data Mining Context

Nitrogen Fertilizer

- easy to measure when manuring
- three points into the growing season where nitrogen fertilizer is applied
- three attributes: N1, N2, N3

Vegetation Measuring

- Red Edge Inflection Point
- first derivative value along the red edge region
- aerial photography or tractor-mounted sensor
- larger value means more vegetation
- measured before N2 and N3
- two attributes: REIP32, REIP49

Work in Progress: Self-Organizing Maps
--

Electric Conductivity

- measure apparent conductivity of soil down to 1.5m
- uses commercial sensors
- one attribute: EM38

Available Data Points of interest Data Modeling Results Work in Progress: Self-Organizing Maps
--

Yield

- measure yield when harvesting
- data from 2003 (previous year) and 2004 (current year)
- two attributes: Yield03, Yield04

Table: Attributes overview

Attr.	min	max	mean	std
N1	0	100	57.7	13.5
N2	0	100	39.9	16.4
N3	0	100	38.5	15.3
REIP32	721.1	727.2	725.7	0.64
REIP49	722.4	729.6	728.1	0.65
EM38	17.97	86.45	33.82	5.27
Yield03	1.19	12.38	6.27	1.48
Yield04	6.42	11.37	9.14	0.73

Splitting the data

Table: Overview: available data sets for three fertilization times (FT)

FT1	Yield03, EM38, N1
FT2	Yield03, EM38, N1, REIP32, N2
FT3	Yield03, EM38, N1, REIP32, N2,
	REIP49, N3

- FT1 ⊂ FT2 ⊂ FT3 (in terms of attributes)
- size of data sets: \approx 5000 records
- For each FT*: Variable to predict is Yield04

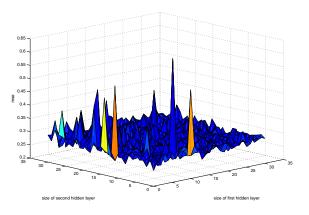
Outline	
Motivation	
Available Data	
Points of interest	
Data Modeling	
Results	
Work in Progress: Self-Organizing Maps	

Research Questions

- How much does *fertilization* influence current-year yield?
- Is there a correlation between data attributes that influences yield?
- How well can modeling techniques predict Yield2004?
- Can we model the data with a multi-layer-perceptron? (reproducing earlier results)
- What would be the optimal MLP's topology (number of neurons per layer)?

Data Modeling: Multi-Layer Perceptron

- Feedforward artificial neural network
- Maps a set of input data onto output data
- Mapping can be learned
- Here: predict current year's yield from current data


Data Modeling: Multi-Layer Perceptron

- Use different-size multi-layer-perceptrons for modeling
- Try to determine optimal layer size (number of hidden layers:
 2)
- Compare MLPs for different data sets
- Use cross-validation and mean squared error for performance measuring

Outline	
Motivation	
Available Data	
Points of interest	
Data Modeling	
Results	
Work in Progress: Self-Organizing Maps	

MSE plot for FT1

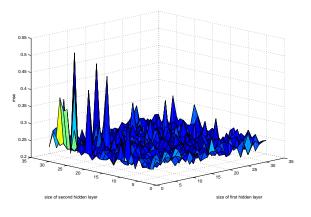


Figure: MSE for first data set

Georg Ruß, Rudolf Kruse, Martin Schneider, Peter Wagner

Outline	
Motivation	
Available Data	
Points of interest	
Data Modeling	
Results	
Work in Progress: Self-Organizing Maps	

MSE plot for FT2

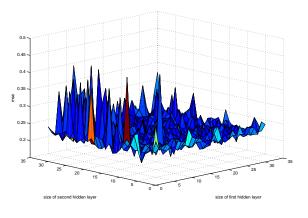


Figure: MSE for second data set

Georg Ruß, Rudolf Kruse, Martin Schneider, Peter Wagner

Outline	
Motivation	
Available Data	
Points of interest	
Data Modeling	
Results	
Work in Progress: Self-Organizing Maps	

MSE plot for FT3

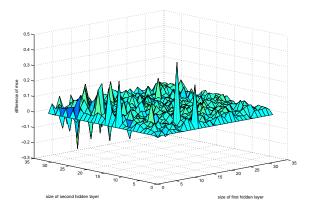


Figure: MSE for third data set

Georg Ruß, Rudolf Kruse, Martin Schneider, Peter Wagner

MSE difference plot between FT1 and FT2

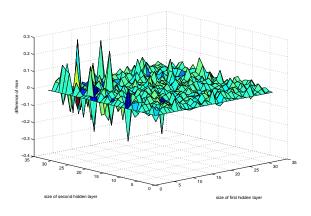


Figure: MSE difference from first to second data set

Georg Ruß, Rudolf Kruse, Martin Schneider, Peter Wagner

MSE difference plot between FT2 and FT3

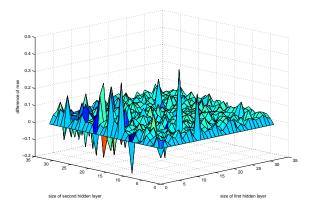


Figure: MSE difference from second to third data set

Georg Ruß, Rudolf Kruse, Martin Schneider, Peter Wagner

MSE difference plot between FT1 and FT3

Figure: MSE difference from first to third data set

Georg Ruß, Rudolf Kruse, Martin Schneider, Peter Wagner

Outline Motivation Available Data Points of interest Data Modeling Results Work in Progress: Self-Organizing Maps	
--	--

Summary MLP

- data can be modeled well with an MLP
 - Iow overall error
 - prediction accuracy of between 0.45 and 0.55 t/ha at an average yield of 9.14 t/ha
- prediction gets better with more data
 - expected behaviour
 - shown by difference plots

Outline	
Motivation	
Available Data	
Points of interest	
Data Modeling	
Results	
Work in Progress: Self-Organizing Maps	

Using the MLP predictor

- use MLP predictor to optimize fertilization
- get new data and try to understand MLP's predictions
- \blacktriangleright \Rightarrow that's what's next

Data Modeling: Self-Organizing Maps

- Unsupervised artificial neural network
- Maps high-dimensional data onto two-dimensional plane
- Preserves neighborhood relations
- ► Here:
 - recognition of correlations
 - understanding of data
 - visualization of data

Outline	
Motivation	
Available Data	
Points of interest	
Data Modeling	
Results	
Work in Progress: Self-Organizing Maps	

Data split

Table: Overview on available data sets for specific fertilization strategies for different fields

F131-all	YIELD05, EM38, N1, REIP32, N2, REIP49, N3, YIELD06, fert. strategy
F131-net	subset of F131-all where fertilization strategy is neural network
F330-all	YIELD05, EM38, N1, REIP32, N2, REIP49, N3, YIELD06, fert. strategy
F330-net	subset of F330-all where fertilization strategy is neural network

Results for F131-all, Labels/U-Matrix

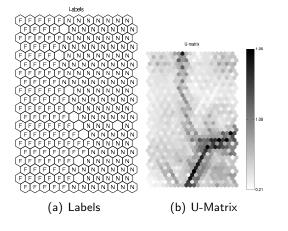
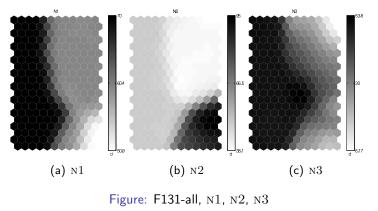
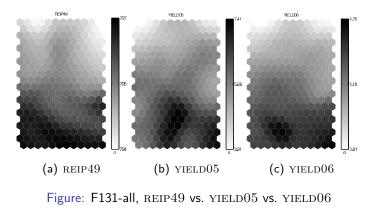
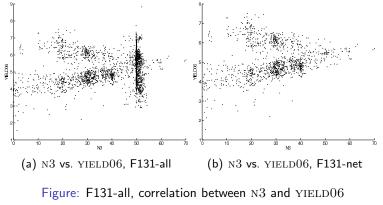



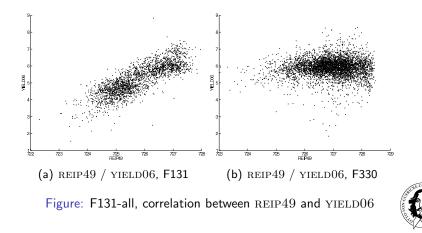
Figure: F131-all, U-Matrix and Labels


Georg Ruß, Rudolf Kruse, Martin Schneider, Peter Wagner

Results for F131-all, Nitrogen



Results for F131-all, REIP, Yield


Results for F131-all, correlation

Results for F131-all, correlation

Outline	
Motivation	
Available Data	
Points of interest	
Data Modeling	
Results	
Work in Progress: Self-Organizing Maps	

Summary SOM

- very good tool for visualizing the data
- helps finding correlations easily without correlation plots
- helps finding attributes that can be used for predicting yield

Outline	
Motivation	
Available Data	
Points of interest	
Data Modeling	
Results	
Work in Progress: Self-Organizing Maps	

Further Work

- evaluate further modeling techniques
- compare techniques on further (already available) data sets
- generate optimized decision rules for, e.g. usage of fertilizer or pesticides

Outline	
Motivation	
Available Data	
Points of interest	
Data Modeling	
Results	
Work in Progress: Self-Organizing Maps	

${\sf Questions}\ /\ {\sf Discussion}$

